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1. Introduction

The storage of charged particles in a small volume [1,2]
allows various investigations as, e.g., in the fields of analytical
(bio-)chemistry [3,4], ion-molecule reactions [5,6], delayed pho-
todissociation [7] as well as mass spectrometry of stable and
short-lived nuclides [8,9]. In general, a thorough understanding of
the applied trapping device is required for its successful applica-
tion. To this end, various ion trapping and detection methods have
been invented and further developed over the years. In the case
of Penning traps these include FT-ICR MS (Fourier-transform ion-
cyclotron-resonance mass spectrometry) [10,11], the detection of
the cyclotron resonance frequency by measuring the reduction of
the time of flight (ToF) to an external ion detector [12,13], dipolar
and quadrupolar excitations [13–15], and buffer gas cooling (axial-
ization) [16,17] to name a few.

In the present work a specific variation of the electrostatic
potential is investigated: the elliptical Penning trap [18], where
an additional azimuthal quadrupolar field is added to the electric
trapping field of the standard Penning trap, in analogy to earlier
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considerations for the Paul trap [19,20]. The resulting configuration
is thus similar to the “trapped ion analyzer cell” [21], which pre-
ceded the transition from earlier ICR “drift cell” techniques to FT-ICR

MS. For the case of a small perturbation an additional azimuthal
quadrupolar component has been treated earlier with respect to
the invariance of the sum of squared frequencies of the eigenmo-
tions [22,23]. In contrast, the present work investigates azimuthal
quadrupolar components up to the limit of ion-motion stability.
The effect of the additional field on the radial ion motion is probed
with argon and fullerene ions. The results are compared to the-
oretical predictions and to simulations of the ion trajectories. A
full account of the theory of the elliptical Penning trap is given by
M. Kretzschmar in a separate article of this volume [24]. Note that
these investigations are performed with respect to the ion motion
of single trapped particles. A study of the influence of an azimuthal
quadrupolar field on the diocotron frequency of an electron plasma
can be found in ref. [25].

2. Ion motion in a Penning trap

2.1. Conventional Penning trap

In a conventional Penning trap [23] particles with mass m and
charge q are stored in a superposition of a homogeneous magnetic

http://www.sciencedirect.com/science/journal/13873806
mailto:martin.breitenfeldt@cern.ch
dx.doi.org/10.1016/j.ijms.2008.05.008
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field �B = (0, 0, B) and an electrostatic axial quadrupolar field for
radial and axial confinement, respectively. The electrostatic poten-
tial is of the form:

˚(x, y, z) = U0

2d2

(
z2 − r2

2

)
+ ˚0, (1)

with r =
√

x2 + y2 and a potential difference U0 applied between
the hyperbolical endcap and ring electrodes. With a radius r0 of the
ring electrode and a distance z0 of the endcaps from the center, the
trap dimension d is given by

d2 = 1
2

(
z2

0 + r2
0
2

)
. (2)

As in the following, we are only concerned with the ion motion
inside the trap, the overall offset of the trap potential ˚0 can be
neglected. A stored ion is moving with three independent motional
modes: an oscillation in the axial direction (trapping motion) with
the (angular) frequency

ωz =
√

qU0

md2
(3)

and two radial modes (cyclotron motion and drift motion) with the
reduced cyclotron frequency ω+ and the magnetron frequency ω−,
respectively,

ω± = 1
2 (ωc ± ω1), (4)

where

ωc = q

m
B (5)

is the cyclotron frequency in the absence of the electric field and
ω1 is defined as

ω1 =
√

ω2
c − 2ω2

z . (6)

In other contexts [26,27] this frequency has been denoted as the
parametric frequency ωp.

The stability condition of the radial motion ω2
c > 2ω2

z leads to
an upper limit of the mass-to-charge ratio:

m

q
<

(
m

q

)
crit

= d2B2

2U0
. (7)

With this ratio, the Penning trap parameter

m/q ω2

˘ =

(m/q)crit
= 2 z

ω2
c

; (8)

can be defined. It is a dimensionless parameter, which character-
izes the trapping condition of the ion motion [28]. For the standard
Penning trap, the stability range extends from ˘ = 0 to ˘ = 1. As
shown below, this range is increased for elliptical traps or alterna-
tively, a modified Penning trap parameter ˜̆ can be introduced.

2.2. Elliptical Penning trap

In the case of an elliptical Penning trap an additional quadrupo-
lar potential

˚ellipt = a2,0 · c2
Uellipt

r2
0

(x2 − y2) (9)

is added to the standard electrostatic potential (Eq. (1)). Uellipt is the
additional voltage applied to the different segments of the ring elec-
trode (see Section 3). The coefficients a2,0 and c2 are introduced to
describe the influence of the particular electrode configurations:
The coefficent c2 is derived from a Fourier transform of the volt-
ages applied to the ring segments as a function of the azimuthal
Mass Spectrometry 275 (2008) 34–44 35

angle. For the present configuration (see below) this coefficient
is c2 � 1.45. As the ring has a finite extension and the azimuthal
quadrupolar field is not applied to the endcaps (as e.g., the dipo-
lar field of an “infinity cell” [29]) the effect of the Uellipt on the
ring electrodes is reduced. a2,0 quantifies this shielding influence
of the endcaps. For asymptotically symmetric traps (r2

0 = 2z2
0 and

thus d2 = z2
0 = r2

0 /2) [30] a numerical calculation gives a2,0 � 0.78
(see below). The axial part of the potential energy

Ez(z) = 1
2 mω2

z z2 (10)

remains unchanged by the ˚ellipt contribution. The radial part can
be rewritten as [24]

Er(x, y) = − 1
4 mω2

z ((1 − �)x2 + (1 + �)y2), (11)

where the parameter

� = a2,0 · c2
2Uellipt

U0
(12)

shall be denoted as “ellipticity”. Four cases can be distinguished
(Fig. 1):

• � = 0: Standard Penning trap: The equipotential lines in the xy-
plane are circles.

• 0 < |�| < 1: The equipotential lines are more or less stretched
ellipses.

• |�| = 1: The equipotential lines distort to straight lines (no ion
confinement).

• |�| > 1: A saddle with hyperbolic equipotential lines is generated
(no ion confinement).

The radial eigenfrequencies of the elliptical Penning trap are
predicted as [24]:

ω̃± =
√

1
2

(ω2
c − ω2

z ) ± 1
2

√
ω2

c ω2
1 + �2ω4

z , (13)

which, when expanded for ω̃− in ω2
z /ω2

c , yields the known relation
[23]

ω̃− = ω2
z

2ω2
c

√
1 − �2, (14)

whereas the axial frequency remains unchanged, ω̃z = ωz .

Here and in the following, symbols without tilde refer to the

ideal Penning trap (no additional quadrupolar potential), symbols
with tilde refer to the elliptical Penning trap. The trapping fre-
quency ωz is related to the radial frequencies by

ω2
z = 2ω+ω− = 2ω̃+ω̃−√

1 − �2
. (15)

Furthermore, by squaring Eq. (13) the invariance theorem [22,23]
is recovered:

ω̃2
+ + ω̃2

− + ω̃2
z = ω2

+ + ω2
− + ω2

z = ω2
c . (16)

The values � = ±1 mark the transition to an imaginary frequency
ω̃−, i.e., the end of stable magnetron orbits in the elliptical Pen-
ning trap. They correspond to a maximum of the applied elliptical
potential Uellipt at the ring segments of

U(max)
ellipt = U0

2a2,0 · c2
. (17)

For � �= 0 the upper limit of the charge-to-mass ratio is denoted by
(˜m/q)crit. It is obtained from the condition ω2

c ω2
1 + �2ω4

z = 0 (see
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� = 0, (b) � = −0.8, (c) � = −1 and (d) � = −2 (full lines and dashed lines for negative and

Fig. 2 shows the dependence of the eigenfrequencies on the Pen-
ning trap parameter ˘ for three different ellipticities: � = 0, 0.8
and 1. Beyond the point where the magnetron frequency ω̃− and the
reduced cyclotron frequency ω̃+ considered, e.g., as functions of the
mass of the trapped particle become equal, i.e., beyond ω̃− = ω̃+,
the trapping condition Eq. (7) can not be satisfied.

The influence of the ellipticity represented by � on the ion orbits
can be described by introducing the semi-major axes are R̃−maj and
Fig. 1. Equidistant equipotential lines in the z = 0 plane for different values of �. (a)
positive values, respectively).

Eq. (13)) as(̃
m

q

)
crit

= d2B2

2U0
· 2(

1 +
√

1 − �2
) =

(
m

q

)
crit

· 2(
1 +

√
1 − �2

) .

(18)

This results in an increase of the critical mass-to-charge ratio
(˜m/q) as compared to that of the standard Penning trap (Eq. (7)).
crit

The Penning trap parameter ˜̆ therefore depends on the ellipticity
and becomes

˜̆ = m/q

(˜m/q)crit

= m/q

(m/q)crit

1 +
√

1 − �2

2
= ω2

z

ω2
c

(1 +
√

1 − �2)

= ˘ · (1 +
√

1 − �2)
2

. (19)

Thus, the maximum value of ˘ varies from 1 to 2 as |�| varies from
0 to 1, while ˜̆ is again a dimensionless parameter between 0 and
1.

By use of ˘ , as defined in Eq. (8), the eigenfrequencies can be
expressed as:

ω̃z

ωc
= ωz

ωc
=

√
˘

2
, (20)

ω̃±
ωc

= 1
2

√
2 − ˘ ± 2

√
1 − ˘ + 1

4
�2˘2. (21)
Fig. 2. The frequency ratios ωz/ωc, ω̃+/ωc, and ω̃−/ωc as a function of the Pen-
ning trap parameter ˘ for ellipticities � = 0, (top), |�| = 0.8, (center), and |�| = 1,
(bottom). In the lowest plot the magnetron frequency is equal to zero.
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Fig. 3. DC connections to the ring segments of ClusterTrap in case of the elliptical
Penning trap.

R̃+maj of the ion orbits [24]:

R̃±maj = R̃± ·
√

ω2
c + |�|ω2

z ±
√

ω2
c ω2

1 + �2ω4
z

2(ω̃±/ω1) ·
√

ω2
c ω2

1 + �2ω4
z

. (22)

In analogy, the semi-minor axises is given by:

R̃± min = R̃± ·
√

ω2
c − |�|ω2

z ±
√

ω2
c ω2

1 + �2ω4
z

2(ω̃±/ω1) ·
√

ω2
c ω2

1 + �2ω4
z

. (23)

For the cyclotron motion the difference between R̃+, R̃+maj and
R̃+ min is less than 0.1% for the maximum ellipticity � = 1, so in the
scope of the current investigation we will assume R̃+ = R̃+maj =
R̃+ min. The resulting ion trajectories are illustrated in Section 5,
below.

3. Experimental setup and procedure
The experiments were performed at ClusterTrap [31,32] (now at
Greifswald, Germany), a setup for the investigation of small metal
clusters [33–35] and fullerenes [36], and the study of ion manip-
ulation in Penning traps [26,37–44]. It comprises an ion source, a
transfer section, a Penning trap with hyperbolically shaped elec-
trodes (r0 = 20 mm, r2

0 = 2z2
0), a superconducting magnet (B =

4.97 T), and a time-of-flight section with a conversion-electrode
micro-channel-plate detector for mass analysis. For most of the
present measurements a potential U0 = 10 V was applied between
the ring electrode and the two endcap electrodes for ion storage.

3.1. Elliptical Penning trap

The ring electrode is segmented with the dividing slits at the
angular coordinates �1, �2, . . . , �8 = �0 [26,37] (see Fig. 3) in order
to allow the application of various radiofrequency (rf) excitations,
e.g., dipolar, quadrupolar, or octupolar rf fields [44], for the manipu-
lation of the ion motion [27]. The sizes of the segments are denoted
by �i = �i − �i−1 for i = 1, . . . , 8 and the voltages Ui were applied
to the segments. At ClusterTrap there are two pairs of opposing
Mass Spectrometry 275 (2008) 34–44 37

Fig. 4. The DC voltages (normalized to the voltage at segment 1) applied to the
segmented ring electrode as a function of the azimuthal angle �.

segments, �1 = �5 = 80◦ and �3 = �7 = 40◦, separated by four
�2 = �4 = �6 = �8 = 30◦ segments.

The voltages were chosen such that their average potential con-
tribution on the ring electrode was zero:

8∑
n=1

Un · �n = 2 · U1 · 80◦ + 4 · U2 · 30◦ + 2 · U3 · 40◦ = 0, (24)

with U5 = U1 and U7 = U3. Frequency shifts due to a change of the
axial potential well and the trapping potential depth are therefore
avoided. With the four 30◦ segments on ground potential (U2 =
U4 = U6 = U8 = 0) this results in a configuration with U3 = −2U1
as plotted in Fig. 4. In the following U1 is identified with Uellipt.

For a comparison of the effect of Uellipt with the theoretical
prediction, the coefficient c2 has to be calculated for the present
geometry by a Fourier analysis of the radial potential. The ori-
gin of the angular coordinates is set in the middle of segment 1
such that �1 = �1/2 and �0 = −�1/2 so that �1 = �1 − �0. Fur-
thermore, �7 = 2� − �2, �6 = 2� − �3, and �5 = 2� − �4 (Fig. 4).
The potential function U(�) thus acquires the symmetry properties
U(�) = U(−�) and U(�) = U(� + �). For the Fourier expansion of
U(�) the first symmetry property implies that the Fourier series
is a pure cosine series, the second property permits only terms
depending on even multiples of �. Thus for the current geometry
the Fourier expansion of the potential of the ring electrode assumes
the form

U(�) =
∞∑

u2n cos(2n�) = Uellipt

∞∑
c2n cos(2n�), (25)
n=0 n=0

with the dimensionless Fourier coefficients c2n.
The condition (24) requires c0 = 0. The Fourier components are

given by

u2n = 1
�

+�∫
−�

d� · U(�) cos(2n�)

= 1
n�

4∑
i=1

Ui · (sin(2n�i) − sin(2n�i−1))

= 2
n�

[(U1 − U2) · sin(n�1) + (U3 − U2) · (−1)n sin(n�3)]

= 2
n�

[Uellipt · sin(n · 80◦) − 2Uellipt · (−1)n sin(n · 40◦)]. (26)

The resulting first 16 Fourier coefficients are listed in Table 1.
The frequency shift caused by the additional azimuthal

quadrupolar field was probed via the excitation of the radial ion
motion and the measurement of the resonance frequencies. The
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Table 1
Fourier coefficient for the ClusterTrap setup (to six significant digits)

c2 = +1.44537 c18 = 0
c4 = −0.51808 c20 = −0.01915
c6 = +0.18378 c22 = +0.13379
c8 = −0.21117 c24 = −0.13783
c10 = −0.00525 c26 = +0.00202
c12 = +0.27564 c28 = +0.06033
c14 = −0.21023 c30 = −0.03676
c16 = +0.02393 c32 = +0.06476

dipolar excitation signal was achieved by a function generator
(Stanford Research System, model DS345) and a home-built phase
splitter. It was applied to two opposing 30◦ segments with oppo-
site polarity. For the quadrupolar excitation a second rf signal was
produced by another function generator and the amplitude was
increased by use of an rf amplifier (ENI, model 2100L). The signal
was applied on the other two 30◦ segments with the same polarity
[18,45]. Two different detection schemes were used as described in
the following.

3.2. Time-of-flight effect measurements on fullerene ions

Fullerene ions were produced in an external ion source [36]
by the evaporation of neutral fullerenes in an oven. After electron
impact ionization they were transferred to the Penning trap by use
of electrostatic ion-optical elements. For the capture and accumu-
lation the kinetic energy of the ions was chosen such that the ions
just passed the endcap potential and afterwards lost energy due
to collisions with argon buffer gas inside the trap. The buffer gas
background pressure was kept constant in the order of 10−5 Pa. The
fullerene ion beam was gated by deflectors with typical accumula-
tion periods of 700 ms in order to prevent an interaction with the
stored ions during the following experimental steps. In addition,
mass-selective centering and cooling was applied [16].

The frequencies �̃+ and �̃− were determined by monitoring the
time of flight (ToF) of the ions from the trap to the detector as a
function of the frequency of the applied rf excitation [12,14]. In
resonance, the orbital magnetic moment

�� = I · �A = q
ω

2�
· �R2

+ (27)

is increased due to the larger amplitude of the cyclotron motion,
the radius R+. �A is the area enclosed by the ion trajectory. Thus, in

resonance, the magnetic energy of the ions

Er = − �� · �B (28)

is increased as well. (Note that �� and �B have opposite directions.)
When the ions are axially ejected from the trap, they experience
an accelerating force towards the detector as they drift through the
magnetic field gradient [46]:

�F = �∇( �� · �B). (29)

Accordingly, particles with a larger magnetic moment � arrive
earlier at the detector than particles with a smaller � [12]. The dif-
ference in the ToF for resonantly and non-resonantly excited ions
(ToF effect) depends on the radius and the frequency of the ion
motion. For the excitation of the cyclotron motion the ToF effect
can be measured directly. In the case of the excitation of the mag-
netron motion, however, the magnetic moment is too small to
yield a measurable ToF effect. Therefore, the magnetron motion is
converted to cyclotron motion [13] by a broadband quadrupolar
excitation before the ions are ejected from the trap. Similarly, the
resonance frequency for this quadrupolar excitation, namely the
sum of the reduced cyclotron and the magnetron frequency, can be
Mass Spectrometry 275 (2008) 34–44

determined by first giving the ions a defined magnetron radius (via
a dipolar excitation at the magnetron frequency) and then apply-
ing the quadrupolar rf signal for conversion of the motional modes.
This is the approach taken in precision mass measurements on
short-lived radionuclides at a resolving power exceeding a mil-
lion [8,9]. In the present investigation, the damping by collisions
with residual buffer gas has limited the resolution of the ToF-effect
measurements.

3.3. FT-ICR measurements on argon ions

The frequency shifts have also been probed with Ar+. The ions
were produced in the trap volume by electron-impact ionization
of argon atoms. This production method has somewhat less well-
defined initial conditions for the ion position and kinetic energy as
compared to the case of fullerenes, since argon buffer gas cooling
cannot be applied. However, it allowed the generation of a larger
number of ions and therefore the analysis of the ion motion using
FT-ICR mass spectrometry. This method has been further applied in
a recent study of FT-ICR monitoring of various excitation schemes
[44].

In the present work, the image current induced by the revolving
ions was picked up via the two opposing 80◦ ring segments and fed
into a home-built differential amplifier. The signal was recorded
by a spectrum analyzer (Stanford Research Systems, model SR760).
This device has a relatively small memory size (1 kB), which limits
the resolving power of the signal in the frequency domain. With a
sampling frequency of 100 kHz, the frequency range extends only
to a Nyquist limit [47] of 50 kHz. Therefore, this method was limited
to the determination of the magnetron frequency.

4. Results

The expected dependence of eigenfrequencies �̃± = ω̃±/(2�) on
Uellipt for the present experimental settings is shown in Fig. 5. In the
case of Ar+ and C60

+ the maximum frequency shift is expected to
be ��+ max = �̃+ − �+ = 168 mHz and 3 Hz, respectively. Therefore,
�̃+ can be considered to be constant within the uncertainty of the
present study. In contrast, the shift of the magnetron frequency
��− max = �̃− − �− is about two orders of magnitude larger. Con-
sequently, the �− shift can be monitored by measuring the sum
frequency �̃+ + �̃− = �̃conv at which the conversion from the mag-
netron into the cyclotron motion takes place [13].
4.1. Time-of-flight effect measurements

For the determination of the reduced cyclotron frequency �̃+ in
the elliptical Penning trap the cyclotron motion was excited with
a radial dipolar rf field for Tex = 30 ms and the resulting time of
flight of the C60 ions was measured as a function of the excita-
tion frequency. In Fig. 6, two �̃+ resonances for elliptical potentials
Uellipt = 0 V and Uellipt = 2.5 V are shown. As expected no shift of the
eigenfrequency is observed within the uncertainties of the order of
2 Hz as determined from the resonance curves fitted with a Gaus-
sian.

The change of the conversion frequency �̃conv = �̃+ + �̃− was
determined as a function of the elliptical potential by scanning the
frequency �rf of the quadrupolar rf excitation after dipolar excita-
tion of the magnetron mode at the appropriate frequency �̃−. The
magnetron motion was excited in dipolar geometry for a period of
Tex = 10 ms at an amplitude of Uex = 10 Vpp, where for each excita-
tion the frequency was adjusted to match the expected magnetron
frequency. Due to the gated rf excitation, the excitation frequency
was Fourier broadened with a width of about ��rf = 100 Hz and the
actual magnetron frequency was always maintained well within
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Fig. 5. Frequency shifts predicted by Eqs. (12) and (13) ��+ = �̃+ − �+ (left) and ��− = �̃− − �− (right) for Ar and C60 as a function of the ellipticity voltage. With the
parameters U0 = 10 V, B0 = 4.97 T, a2,0 = 0.78, c2 = 1.45 the unshifted frequencies are �+ = 1907.1 kHz and �− = 800.9 Hz for Ar+, and �+ = 105.2 kHz and �− = 806.8 Hz for
C60

+, respectively. Note that the curves for the expected frequency shift ��− are almost identical.

that range. In Fig. 7 two resonances for the determination of �̃conv at
the elliptical potentials Uellipt = 0 V and Uellipt = 2.5 V are shown for
C60

+. As the magnetron frequency is given by �̃− = �̃conv − �̃+ and
�̃+ is almost constant (see above) the observed shift is practically
identical with the shift of the magnetron frequency.

In addition, the shift of the magnetron frequency was measured
in the more direct way, i.e., by frequency scans of the dipolar exci-
tation at the magnetron frequency. Since the magnetic moment
of the low-frequency magnetron motion is too small to produce a
measurable ToF effect, a subsequent conversion from magnetron to
cyclotron motion was added, as in the previous experiment, i.e., by
the application of a quadrupolar excitation at �̃conv. The frequency
�̃conv was adjusted for each elliptical voltage Uellipt, in analogy with
�̃− in the previous experiment. In addition, a fast conversion in
10 ms was used to broaden the excitation bandwidth.

The measured frequency shifts of �̃− and �̃conv are plotted in
Fig. 8 for elliptical potentials from 0 to 3.5 V. The two ordinate scales

Fig. 6. ToF resonances of C60
+ for the determination of �̃+ , i.e., mean ToF as a function

of the frequency for dipolar excitation, with Uellipt = 0 (bottom, open circles) and
Uellipt = 2.5 V (top, filled circles), superposed on the trapping potential U0 = 10 V.
The error bars indicate the standard deviation of the mean ToF. The difference for the
base line of the mean ToF is due to the different values of the electrostatic potentials
applied to the deflectors and lenses in the TOF section.
Fig. 7. Mean ToF of C60
+ as a function of the quadrupolar excitation frequency (after

dipolar excitation of the magnetron motion) for the determination of �̃conv = �̃+ + �̃−
at Uellipt = 0 V (open circles) and Uellipt = 2.5 V (filled circles) at trap parameters as
in Fig. 6.

are shifted towards each other by the value of the reduced cyclotron
frequency �+ = 105.18 kHz of the standard Penning trap (Uellipt =
0). For values Uellipt ≥ 4.0 V, i.e., Uellipt/U0 ≥ 0.4, it was not possible
to store a sufficient number of ions such that measurements could
be performed. Apparently, for these conditions the potentials and

Fig. 8. Measured magnetron frequency �̃− (filled squares) and conversion frequency
�̃conv = �̃− + �̃+ (open circles) of C60

+ as a function of Uellipt. Note that the scales
are shifted relative to each other by a constant value of �+ =105.18 kHz, i.e., the
reduced cyclotron frequency of the standard Penning trap. The statistical uncertainty
is smaller than the symbol size. The solid line shows the expected behavior according
to Eq. (13).
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thus the ion trajectories are to distorted for extended storage times
(compare also Fig. 10, below).

4.2. FT-ICR measurements

In an independent series of measurements the shift of the mag-
netron frequency of Ar+ was probed by use of FT-ICR MS, i.e.,
�̃− was deduced from a transient of the ions’ image current. As
above, a gated rf excitation (Trf = 10 ms) was applied, which leads

to broad-band excitation with ��rf ∼= 100 Hz. In addition, the exci-
tation frequency was adjusted to match the expected magnetron
frequency.

The observed signal frequency is plotted as a function of the
elliptical potential in Fig. 9. The measurements were performed for
three different trapping potentials: U0 = 10, 20 and 30 V. In order
to compare the results, the magnetron frequency and the elliptical
voltage are normalized to U0 = 10 V, i.e., �̃−(U0) · 10 V/ U0 is plotted
versus Uellipt · 10 V/ U0. As deduced from the graph, the magnetron
frequency decreases for higher elliptical potential and the reduction
scales with the trapping potential.

5. Simulation

The elliptical Penning trap has been further investigated by sim-
ulations with SIMION (version 3D 7.0) [48]. The geometry of the
hyperbolically shaped electrodes as well as the magnitude of the
magnetic field have been matched to the experimental conditions:
The ring electrode is divided into two 80◦, two 40◦, and four 30◦ seg-
ments (see Fig. 3 and Fig. 10), the radius of the ring electrode is r0 =
2 cm, the distance between the endcaps is 2z0 =

√
2r0 = 2.83 cm,

Fig. 10. Equipotential lines in the plane z = 0 for different ellipticity voltages Uellipt (calcu
and (d) Uellipt = 6 V with U0 = 10 V. The equipotential lines have an equidistant separation
Fig. 9. Magnetron frequency of Ar+ at U0 = 10, 20 and 30 V as a function of Uellipt as
measured by the FT-ICR technique. The values of �̃− and Uellipt have been rescaled to
a 10-V trap potential. Solid line as in Fig. 8.

and the trapping potential is U0 = 10 V. The grid step size applied
for the numerical calculations was 0.5 mm.

As in the corresponding experimental studies, the elliptical volt-
age Uellipt was applied in the following way: the 80◦ segments were
set to Uellipt and the 40◦ segments to −2 · Uellipt, while the 30◦ seg-
ments were on ground potential. In this case the Fourier coefficient
is c2 � 1.45 (Table 1). The equipotential lines for four different val-
ues of Uellipt are plotted for the z = 0 plane in Fig. 10.

In a standard Penning trap the trajectory of the ion motion is a
superposition of two circular motions as shown in Fig. 11 (part a

lations performed with SIMION 7.0). (a) Uellipt = 0 V, (b) Uellipt = 2 V, (c) Uellipt = 4 V,
of 0.5 V.
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Fig. 11. Equipotential lines and trajectories for an ion of mass-to-charge ratio m/q = 10 0
for the elliptical Penning trap with Uellipt = 2 V (c–f). For comparison of the magnetron and
(f).

and b). In the present case an ion with mass-to-charge ratio m/q =
10000 has been used to clarify the change of the ion trajectory as
a function of the ellipticity, since the radial eigenfrequencies �− =
0.9 kHz and �+ = 6.7 kHz are of a similar order of magnitude. The
radii have been chosen to be R− ≈ 7 mm > R+ ≈ 2 mm (Fig. 11(a))
and R− ≈ 2 mm < R+ ≈ 15 mm (Fig. 11(b)). In both cases the ion
follows the equipotential lines with its magnetron motion while, in
addition, performing cyclotron cycles.

When Uellipt is applied, the ions still follow the equipotential
lines with their magnetron motion and move on an elliptical orbit as
shown in Fig. 11(c) for R̃−maj ≈ 7 mm > R+ ≈ 2 mm. The distortion
of the cyclotron orbit is predicted to be orders of magnitude smaller
00 in the plane z = 0 for the standard Penning trap with Uellipt = 0 V (a and b), and
the cyclotron motion R̃−maj > R+ is plotted in (a), (c), (e) and R̃−maj < R+ in (b), (d),

than that of the magnetron orbit (Section 2.2). Fig. 11(d) confirms
this prediction; the cyclotron orbit can still be well described by a
constant radius R+ ≈ 7 mm.

Fig. 11(e) shows a case with R̃−maj ≈ 15 mm close to the trap
radius r0 = 20 mm. The ion still follows the equipotential lines with
the magnetron motion. The magnetron orbit deviates from an ellip-
tical shape due to higher multipole terms of the particular electrode
configuration. In contrast, large cyclotron orbits with R+ ≈ 16 mm
are still well approximated by circles (Fig. 11(f)).

The eigenfrequency of the magnetron motion has been probed
for ions with m/q = 720 (C60

+) and m/q = 40 (Ar+), which were
positioned 1 mm radially off the trap center along the semi-major
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Fig. 12. The deviation of the experimental data (full circles) and of the simulated val-
ues (open circles) from the values predicted by theory for the magnetron frequency,
Eq. (30), as a function of Uellipt for (a) fullerene and (b) argon ions. The dashed line
indicates an offset of 11.2 and 15.5 Hz, respectively. The filled diamonds show the
difference between simulation and theory for the azimuthal quadrupolar compo-
nent, only, (Eq. (13)). The simulation values are adjusted by a constant offset of 3 Hz
each to match the theory value at Uellipt = 0. This offset is probably due to the finite
grid spacing of the simulations.

axis. The initial kinetic energy was set to Ekin = 0 eV, i.e., the ini-
tial velocity was �v+ + �v− = 0 or �v+ = −�v−. The contribution of the
cyclotron mode to the ion trajectory can be neglected. The mag-
netron frequency is deduced from the period of a full revolution.

The difference between the resulting magnetron frequency and the
theoretically predicted values is calculated using Eq. (30) and is
plotted as a function of Uellipt in Fig. 12 (full diamonds).

6. Discussion

The systematic shift between the measured frequencies and the
simulated values of 10–16 Hz for both, Ar+ and fullerene ions, (see
Fig. 12) is probably due to deviations of a few percent of the experi-
mental trapping parameters U0 and d2 as compared to the assumed
values, for example �U0 � 0.2 V at U0 = 10 V or �d2 � 6 mm2 at
d2 = 200 mm2. Apart from this shift there is a good agreement
between the simulated values and the experimental data, both for
the ToF-effect measurements in case of the fullerene ions and for
the FT-ICR measurements on Ar+ ions. For potentials Uellipt < 2 V
the simulated values coincide with the theoretical predictions for
the ideal elliptical Penning trap, Eq. (13).

For larger values of Uellipt a difference between simulated and
theoretical values as predicted by Eq. (13) can be observed. This
indicates an influence of higher order multipole terms, which (in
Mass Spectrometry 275 (2008) 34–44

analogy to the quadrupole term) cause an additional frequency
shift. The difference can be estimated by theory as described in
ref. [24]. using only the lowest order term for each n we find

�ω̃± = ±2qUellipt

mω1r2
0

∞∑
n=2

a2n,0 · c2n · (2n − 1)!!
(n − 1)!

· r2
0

R̃2±

·
[

sign(�)
(

R̃2
±maj − R̃2

± min

)
2r2

0

]n

, (30)

where a2n,0 gives the reduction of the strength of the 2n-pole term
by the presence of the endcaps. For higher order approximations
see [24].

The eigenfrequency �̃− as a function of the applied voltage Uellipt
was also determined by a SIMION [48] simulation. It included
higher order terms, their coefficients were obtained as described
in ref. [13]. To represent the 2nth multipole the ring electrode was
split into 2nsegments, where each segment had approximately a
angle size of [(360/2n) − 1] degrees. Note that the difference of 1◦

is required by the software. The potential applied to the endcaps
was Vec = 0 V. The multipolar azimuthal potential was achieved by
applying ±1 V to the neighboring ring segments. The potential was
read out in a grid of 20 × 20 × 20 points. These 8000 points were
distributed equally in a cube with an edge length of 60% of the ring
radius r0, where one corner was placed in the center of the trap
and three edges were aligned along the axis of of the Cartesian
coordinate system.

The first three terms of the multipole expansion in spherical
coordinates

˚2n = V2n cos(2nϕ)
2∑

m=0

(
a′

2n,2m

(
r

r0

)2n+2m

P2n
2n+2m(cos 
)

)
, (31)

where Pk
l
(cos 
) are the associated Legendre polynomials and the

coefficients a′ describe the strength of the multipoles, were fitted
to the potential of the simulation.

Note that a transformation of this equation into Cartesian coor-
dinates shows the symmetry in z of the terms with 2n. The terms
with 2n + 1 are anti-symmetric in z, thus they do not contribute to
the expansion of the potential:

˚n = ˚c2n

(
a2n,0

r2n
0

· �((x + iy)2n) + a2n,2

r2n+2
0

· �((x + iy)2n)(r2 − ˛nz2)
+ a2n,4

r2n+4
0

· �((x + iy)2n)(r4 − ˇnz2r2 + �nz4) + . . .

)
. (32)

The coefficients a are adjusted with factors deduced from asso-
ciated Legendre polynomials and the geometrical factor from the
Fourier analysis is calculated separately to c2n = 4/�. Note that this
factor is different from the values given in Table 1 due to the dif-
ferent geometry. The coefficients ˛n = 2(n + 1), ˇn = 8(n + 1), and
�n = 8/3(n + 1)(2n + 1) are obtained by an expansion of the asso-
ciated Legendre functions. The resulting functions were adjusted
by least-square minimization to the potentials as calculated with
SIMION. The resulting coefficients a are shown in Table 2. The 1st
order coefficient a2,0 differs by less than 5% to that published in ref.
[13], i.e., a2,0 = 0.78 instead of 0.80, while the higher order coef-
ficient shows a somewhat larger deviation. Note that this method
is limited to lower multipole terms. The functions are fitted in a
range of r/r0 between 0 and 0.6. Especially for the higher multipole
terms, where r/r0 goes with the nth power, a significant number
of grid points do not contribute to the fitting procedure. Thus the
present values should be taken as a rough estimate.
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Table 2
Coefficients for the influence of the endcaps on the trap potential

a2n,0 a2n,2 a2n,4

a1,0 = 0.70 a1,2 = 0.42 a1,4 = 0.07
a2,0 = 0.78 a2,2 = 0.24 a2,4 = 0.04
a4,0 = 0.77 a4,2 = 0.14 a4,4 = 0.04
a6,0 = 0.78 a6,2 = 0.15 a6,4 = 0.05
a8,0 = 0.65 a8,2 = 0.13 a8,4 = 0.04
a10,0 = 0.78 a10,2 = 0.16 a10,4 = 0.05
Fig. 13. Theoretical predictions of �̃− for different R̃− (solid and dashed lines) and

experimental data (full circles) as a function of Uellipt. (A constant offset of 11.2 and
15.5 Hz (see Fig. 12), respectively, was added to theoretical curves when determining
the radius.)

The difference between the simulated values and those calcu-
lated from theory, which includes the higher-order terms up to a
dodecapolar potential, are displayed in Fig. 12 as open circles as a
function of Uellipt. For comparison the difference of the magnetron
frequency �̃− from the FT-ICR measurement with Ar+ and the ToF-
effect measurement with C60

+ to the theoretical predictions by Eq.
(30) are plotted as well (full circles). Note that unlike the frequency
shift due to the quadrupole component �ω̃− depends on the “radii”
R̃−maj and R̃− min. This dependency allows the determination of the
experimental R− value to about 2.5 mm and 1 mm, respectively, as
calculated using Eq. (30) and shown in Fig. 13.

7. Conclusion

The influence of an additional azimuthal quadrupolar electro-
static field on the eigenfrequencies of ions in a Penning trap has
been investigated. The eigenfrequencies of argon ions, Ar+, and
Mass Spectrometry 275 (2008) 34–44 43

fullerene ions, C60
+, were probed with the FT-ICR technique and the

ToF-effect method, respectively. For the magnetron motion a shift
to smaller frequency values was observed, which is in agreement
with theoretical predictions as well as ion trajectory simulations.
The discrepancies between an ideal elliptical Penning trap and the
present measurements can be explained by contributions of higher
multipole terms.

The investigations are part of a continued study of the funda-
mentals of ion storage and excitation of the ion motions with the
belief that such endeavors eventually improve the understanding
as well as the applicability of ion trapping devices. The present
investigations allow an estimate of possible shifts of the eigen-
frequencies of ions in Penning traps due to additional azimuthal
quadrupolar terms. Especially in the case of high-precision mass
spectrometry of short-lived nuclides [8,9], where relative mass
uncertainties of up to �m/m = 10−8 are required, it is impor-
tant to know the influence of a distortion of the potential to
the motional frequencies. As an example, in the case of Ar+

and for the present experimental parameters, a distortion of the
potential of Uellipt = 1 mV, would result in a frequency shift of
��c = �c − (�̃+ + �̃−) = 0.5 mHz corresponding to a relative shift
of only ��c/�c = 2.5 × 10−10, i.e., well below the present limits
for mass measurements of radionuclides, but already significant
in the case of the even lower uncertainty achieved for stable
particles [49].

A very different application could be found in the field of pho-
todissociation of, e.g., cluster ions [50], where one of the apices (i.e.,
the endpoints of the semi-major axis) of the magnetron trajectory
could be used as a defined location of the particle-laser interac-
tion region. Similar arguments can be made for other interactions
such as electron bombardment or the location for axial injection of
precursor ions or ejection of products.

The present work has studied the ion behavior in static elliptical
field components. In addition, by switching the voltage Uellipt the
ion motion could be manipulated: Depending on the ion position
(i.e., the phase of the ion motion) at the moment of switching, the
ions can be transferred to a smaller or larger magnetron radius.

Yet other possibilities may emerge when the interaction of sev-
eral ions is taken into account, which is outside of the scope of the
present study. One speculation, e.g., would be that in combination
with the technique of the “ion balance” [49,51], where the eigen-
motions of two particles couple, the elliptical Penning trap could
be used to “park” the ions, since the elliptical equipotential trajec-
tories would provide a situation at the apices where the repelling

force between the two ions is minimal.
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Appendix A

In the case of FT-ICR measurements one works with a large num-
ber of ions, which induce image charges in the electrodes resulting
in shifts of the eigenfrequencies. For circular orbits in a standard
Penning trap (i.e., for pure cyclotron motion or pure magnetron
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motion) the frequency shift can be estimated [52] by

ω±,image = ωc

2
±

√(
ωc

2

)2
− ω2

z

2
− ω2

image ≈ ω± ∓
ω2

image

ω1
(33)

with

ω2
image = Nq2

m
· r0

(r2
0 − R2±)

2
, (34)

where N is the number of ions, R± the radius of the ion orbit, and
r0 − R± the distance of the ion from the ring electrode. Ions that are
far out from the center of the trap experience a larger shift than
those with smaller orbital radii.

In the elliptical Penning trap we have (for pure cyclotron or for
pure magnetron motion) elliptical instead of circular ion orbits.
Thus the distance of the ion from the ring electrode varies along
the orbit. For the pure motional modes the shifts of the eigenfre-
quencies can then be estimated [24] by means of a generalization
of Eq. (33)

�ω̃± = ∓ Nq2

2mω1r3
0

·
R̃2

±maj + R̃2
± min − 2R̃2

±majR̃
2
± min/r2

0

R̃2±[(1 − R̃2
±maj/r2

0 )(1 − R̃2
± min/r2

0 )]
3/2

. (35)

Assuming N = 105, an orbital parameter R̃− = 2.5 mm correspond-
ing to the adjusted value of our FT-ICR measurements, and an
ellipticity � < 0.7 this formula yields a magnetron frequency shift
due to image charges of less than 1 mHz. Therefore, for the ion orbits

investigated in our measurements this effect is negligible.
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12] G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297 (1980) 35.

[13] G. Bollen, R.B. Moore, G. Savard, H. Stolzenberg, J. Appl. Phys. 68 (1990) 4355.
[14] M. König, G. Bollen, H.-J. Kluge, T. Otto, J. Szerypo, Int. J. Mass Spectrom. Ion

Processes 142 (1995) 95.
[15] K. Blaum, G. Bollen, F. Herfurth, A. Kellerbauer, H.-J. Kluge, M. Kuckein, S. Heinz,

P. Schmidt, L. Schweikhard, J. Phys. B 36 (2003) 921.
[16] G. Savard, St. Becker, G. Bollen, H.-J. Kluge, R.B. Moore, Th. Otto, L. Schweikhard,

H. Stolzenberg, U. Wiess, Phys. Lett. A 158 (1991) 247.

[

[

[

[

[
[

[
[
[

[

[
[

[

Mass Spectrometry 275 (2008) 34–44

[17] L. Schweikhard, S. Guan, A.G. Marshall, Int. J. Mass Spectrom. Ion Processes 120
(1992) 71.

[18] L. Schweikhard, M. Breitenfeldt, A. Herlert, F. Martinez, G. Marx, N. Walsh, in:
M. Drewsen, U.I. Uggerhoj, H. Knudson (Eds.), Non-Neutral Plasma Physics VI,
AIP Conference Proceedings, vol. 862, New York, 2006, p. 264.

[19] W. Paul, H. Steinwedel, Z. Naturf. 8a (1953) 448.
20] W. Paul, H.P. Reinhard, U.V. Zahn, Z. Phys. 152 (1958) 143.
21] R.T. McIver, Rev. Sci. Instrum. 41 (1970) 555.
22] L.S. Brown, G. Gabrielse, Phys. Rev. A 25 (1982) 2423.
23] L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58 (1986) 233.
24] M. Kretzschmar, Int. J. Mass Spectrom. 275 (2008) 21.
25] J. Fajans, E. Gilson, E.Y. Backhaus, Phys. Plasma 7 (2000) 3929.
26] L. Schweikhard, M. Lindinger, H.-J. Kluge, Rev. Sci. Instrum. 61 (1990) 1055.
27] L. Schweikhard, A.G. Marschall, J. Am. Soc. Mass. Spectrom. 4 (1993) 433.
28] L. Schweikhard, J. Ziegler, H. Bopp, K. Lützenkirchen, Int. J. Mass Spectrom. Ion

Processes 141 (1995) 77.
29] P. Caravatti, M. Allemann, Org. Mass Spectrom. 26 (1991) 514.
30] R.D. Knight, Int. J. Mass Spectrom. Ion Phys. 51 (1983) 127.
31] St. Becker, K. Dasgupta, G. Dietrich, H.-J. Kluge, S. Kuznetsov, M. Lindinger, K.

Lützenkirchen, L. Schweikhard, J. Ziegler, Rev. Sci. Instrum. 66 (1995) 4902.
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